The realization space is [1 0 1 0 1 0 -x1^2 - x1 x1 + 1 -x1^2 - x1 x1 + 1 x1 + 1] [0 1 1 0 0 1 -x1^2 - x1 x1^2 + x1 x1 + 1 -x1^2 - x1 x1^2 + x1] [0 0 0 1 1 -1 -x1^2 - 1 x1^2 + 1 -x1^2 - 1 x1^2 + 1 -x1^2 - 1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (-2*x1^11 - 8*x1^10 - 16*x1^9 - 20*x1^8 - 12*x1^7 + 4*x1^6 + 16*x1^5 + 20*x1^4 + 14*x1^3 + 4*x1^2) avoiding the zero loci of the polynomials RingElem[2, x1^2 + 1, x1, x1 - 1, x1^2 + 3, x1^2 + x1 + 2, x1 + 1, 3*x1^2 + 1, 2*x1^2 + x1 + 1]